If it's not what You are looking for type in the equation solver your own equation and let us solve it.
100=20t+4.9t^2
We move all terms to the left:
100-(20t+4.9t^2)=0
We get rid of parentheses
-4.9t^2-20t+100=0
a = -4.9; b = -20; c = +100;
Δ = b2-4ac
Δ = -202-4·(-4.9)·100
Δ = 2360
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2360}=\sqrt{4*590}=\sqrt{4}*\sqrt{590}=2\sqrt{590}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-2\sqrt{590}}{2*-4.9}=\frac{20-2\sqrt{590}}{-9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+2\sqrt{590}}{2*-4.9}=\frac{20+2\sqrt{590}}{-9.8} $
| (7+4x)/(3)-12=-3 | | 90=3g | | –5n=–40 | | 3r/4-7=6 | | 3d+14=44 | | -3(x-12)=-15 | | y+-9=19 | | 8x-17=x-53 | | 9x+120=180 | | -18-7k=6(3+1k) | | -2/9x-5/36x+1/7x=-50 | | –2r=–10 | | 2x-47+8+8=360 | | 90+5x-18=23 | | d+144=14 | | H(a)=3a+28.6 | | 5g-3=-4g-1 | | 3(x-4)-(x+1)=5 | | x-47+8=360 | | 8x–2–5x+7=1x+1 | | −6n=23/4 | | 3t+-20t+4t+3t+7t=18 | | 1x=89 | | -m/8=29 | | w÷7+2=13 | | 3(2v-5)=21 | | 8x–2–5x+7=4x+4 | | 2m-1=–11 | | 8s+2=33 | | 9-3f=9f | | 3x+15+4x-5=90 | | 20x+10+9x+4=180 |